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Abstract

This paper proposes a new method that identifies risk sources of credit portfolio’s
default clustering as macroeconomic factors, default contagion (asset correlation), and
frailty effect under the Basel regulatory framework. Our model estimates the three time-
varying risk sources and their contributions using Hoeffding decomposition.

Our empirical results for the U.S. aggregated loan sectors find that the default cluster-
ing in each loan portfolio strengthens during economic downturns. The risk contributions
to default clustering are large in order of macroeconomic source, asset correlation, and
frailty effects. The dynamics of risk sources show different in affecting sectors and af-
fected sectors for each crisis. Furthermore, using risk sources contribution analysis by
cross-sector, we find that the subprime mortgage crisis is a systemic event that affects
the entire banking system through the macroeconomic source, while the dotcom bubble
crisis is a locally sectoral systemic event. From these results, we have checked the possibil-
ities that the excess default clustering can be explained using the time-varying risk sources.
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1 Introduction

The default rate depends on the economic conditions as widely acknowledged in the field of
credit risk (see Pesaran et al. (2006), Koopman et al. (2012), and Bonfim (2009)). The default
clustering during the economic crisis, as depicted in Figure 1, is considered an origin of a fat
tail distribution of unconditional credit portfolio loss and causes more difficulty in credit risk
modeling. Therefore, measuring the default clustering and identifying their sources are crucial
for credit portfolio management at financial institutions, as well as the systemic financial risk
management at regulators. This paper suggests a new method that identifies time-varying
risk sources of credit portfolio’s default clustering as macroeconomic factors, default contagion
(asset correlation), and frailty effect based on the regulatory framework.

[Figure 1 is here.]
The regulatory framework has been used the Asymptotic Single Risk Factor (ASRF) model

based on Merton (1974) where an obligor’s default event occurs when its asset value below
down its threshold at debt maturity. The asset value is assumed to be determined by two com-
ponents: one is the systematic factor and the other is obligor-specific factor. The sensitivity
to the systematic factor (asset correlation) is assumed to be constant as a risk parameter.

The single factor assumption on the ASRF model is mitigated by including various ob-
servable covariates ( Rösch (2003), Crook and Bellotti (2010), and Hamerle et al. (2003) for
macro-economic factors and historical default rates) and frailties (Duffie et al. (2009) and
Koopman et al. (2011)1 for common frailty, Kwon and Lee (2018), Jiménez and Mencia (2009)
and Lee and Poon (2014) for industry-specific frailty) to explain and predict the real default
rates of corporates and credit portfolios point-in-time.

The previous models have been mainly focused on decomposing the common systematic
factor into the multiple factors to capture the default clustering, not considering the variation
of sensitivity to the systematic risk factor. In the credit portfolio model based on the Large
Homogeneous Portfolio (LHP) assumption (see Vasicek (1991), Vasicek (2002), Gordy (2003),
and Committee et al. (2005)), the sensitivity to the systematic factor also implies a measure
of the co-movement among different obligor’s asset values and could be entitled the measure
of the contagion among the obligors within a portfolio. Azizpour et al. (2018) shows that the
contribution of firm-by-firm contagion more increases during default clustering episode periods
in economic crisis. In addition to this, there are many empirical studies for procyclical evidence
for asset correlation with economic conditions. (see Lee et al. (2011), Botha and van Vuuren
(2010), Siarka (2014), and Stoffberg and van Vuuren (2016)). However, the time-varying asset
correlation has not been applied to credit portfolio model for regulatory purposes2.

1Koopman et al. (2011) attempts to explain the default clustering using more than 100 macro variables
and firm-specific variables by 112 groups (industry, age of firm, and credit rating) for testing omitted variable
problem.

2Regulatory authorities are regulating individual financial institutions through the consevative guidelines
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In this paper, through the time-varying modelling for the two risk parameters, we sug-
gest a method that could identify risk sources at each point-in-time for the dynamics of the
portfolio loss depending on economic conditions. Firstly, the dynamic default threshold con-
sisting of only lagged macroeconomic covariates is used to model the expected value of the
portfolio default rate. From this model, we can estimate the expectation of portfolio loss given
macroeconomic information. It is a conditional (only macro information) mean of portfolio
loss at time t, simultaneously it is a value that stands for the source of default clustering
from macroeconomic conditions. This approach is similar to the dynamic default threshold
model by Rösch (2003), Crook and Bellotti (2010), and Hamerle et al. (2003), but differs in
use of only lagged macro covariates based on LHP assumption. Secondly, the bivariate time-
varying copula model by Patton (2006) is modified to estimate the univariate time-varying
asset correlation for the comovement among the obligors’ asset within the portfolio. This
risk source could express the excess default clustering after controlling the expected portfo-
lio default level from the macroeconomic source. Thirdly, the frailty effect as the other risk
source is calculated using the estimated two risk sources and the realized portfolio loss. In our
time-varying risk sources model, we examine the possibilities that the excess default clustering
could be expressed using the source from asset correlation in the economic crisis. Lastly, our
paper suggests a simulation method to calculate contributions of each estimated risk source for
point-in-time portfolio losses employing the Hoeffiding decomposition using gaussian copula
correlation between them. 3

As an empirical study, we estimate the time-varying risk sources for aggregate loan sector
level portfolio loss of the U.S. commercial banking system using the quarterly charge-off rates.
We find that losses of each sector portfolio could be predicted by different macro covariate. For
example, the lagged macro covariates used to explain the mortgage sector expected loss are
clearly distinguished compare to other sectors’ them. The time-varying asset correlations show
a lower value than static assumption asset correlation during normal economic conditions in all
sectors. However, it shows increasing rapidly in the crisis periods, then consisting a high level
for a while even though macroeconomic condition recovered. Each crisis period has different
the most volatile sectors for asset correlation by the risk originated sectors. Furthermore, we
have observed that the channels as risk sources may reveal differently for each crisis by the loss
contribution analysis results aspect of cross-sectoral risk contagion. Lastly, we have checked
the utilization for time-varying risk sources through a comparison of the frailty effects which
are estimated based on various assumptions for risk parameters.

The contributions of this paper are fourfolds. Firstly, our methods propose to identify

in Internal rating-based credit capital by use to long-term stressed default threshold.
3Although our model does not set distinguished models for the contagion and the frailty exactly as in

Azizpour et al. (2018) which used the past default information using default timing data for corporate obligors,
it can reflect the excess default clustering in observation time t as well as past default level information in
within the portfolio.
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risk sources of the default clustering at each point-in-time. Through the time-varying risk
parameters setting, we could decompose the portfolio loss into the dynamics effect from mac-
roeconomic condition, contagion among obligors within portfolio, and frailty. By separating
the mixed effect of the macroeconomic covariates’ dynamics and the asset correlation effects
in previous multi-factor approaches, each risk source of the portfolio loss could be more accur-
ately and independently identified. Secondly, in our model, most of the frailty effect known
as a latent factor could be expressed intuitively by the dynamics of asset correlation source.
Our asset correlation model has similar characteristics of the frailty factor as time-varying and
mean-reverting because it expresses uncertainty that is unexplained excess part of loss above
the expectation from given information. Thirdly, our methods could be useful ways to capture
portfolio risk sources and their contributions for practitioners as not only portfolio managers
but also regulators. They might build strategies for managing credit risks on a source-by-
source basis to ensure the stability of each portfolio’s as well as entire financial systems. It
can also minimize the model risk from not only static risk parameter assumption but also
the lack of data in the rolling window method4. Finally, our proposed methods are simple
and easy tools without additional data and assumptions under the current standard credit
risk management process based on the various constraints of the regulatory frame nevertheless
adopt the realistic assumption for default threshold and asset correlation. To the best of our
knowledge, our methods are the first approach to employ all time-varying parameters for the
portfolio credit risk model.

The remainder of this paper is organized as follows. Section 2 develops the time-varying
loss distribution using time-varying sources depending on economic conditions to capture the
default clustering. In the empirical analysis of Section 3 using the loan sector level aggregate
charge-off rates of the U.S. banking system, each portfolio risk source is decomposed and its
contribution to the portfolio loss is measured. Section 4 conclues with comments.

4Many studies on the dynamics of asset correlation have been conducted to overcome the limitation as a
static parameter. All most of studies for asset correlation are estimated by dividing the entire data into parts,
such as the recession dummy variables or the rolling window method. (See Lee et al. (2011); Botha and van
Vuuren (2010); Siarka (2014); Stoffberg and van Vuuren (2016)) However, these approaches also have problems
with the following two aspects. Firstly, These are able to underestimate the asset correlation that is realized
in the crisis window since the effect of reducing volatility in the estimation using the average value. Secondly,
rolling-window estimates requires sufficient data to be obtained within each estimation period for reducing
model risk, but the default data is not enough since its observation frequency is quarterly or be more.
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2 Methodology

The famous models for measuring obligor level default risk are the structural model based
on the option pricing formula and the intensity model based on the survival analysis. In
this section, we briefly review the individual obligor level default and drive the portfolio
level loss model under Large Homogeneous Portfolio (LHP) assumptions using the structural
model based on the Basel regulation. And, we identify the risk sources for the portfolio
loss distribution and then add the time-varying modeling for them to drive the time-varying
portfolio loss function.

2.1 Basel’s portfolio credit risk model

As a well-known structural model by Merton (1974), individual obligor’s default event occurs
when the asset return becomes less than the value of unexpired liabilities during a certain
period of time. That means the net asset value is negative. For obligor level default probability
model, let Vi and hi be asset return and default threshold for borrower i, respectively. Assume
that the distribution of obligor’s asset return is standard normal distribution, the unconditional
default probability of obligor i is given by

p(yi = 1) = p(Vi < hi) = Φ(hi) (1)

where yi denotes the default indicator for obligor i, taking either the value of one for default
or the value of zero for non-default. And Φ is a cumulative standard normal distribution
applied for all time periods. As shown Eq. (1), the unconditional default probability of an
individual obligor can be expressed as a function of the default threshold of the corresponding
borrower. Let obligor i’s standard asset return (or creditworthiness) Vi be a function of the
single systematic risk factor F and the idiosyncratic risk εi.

Vi =
√
ρiF +

√
1− ρiεi, for i = 1, · · · , N (2)

where F ∼ N(0, 1) and εi ∼ N(0, 1), then Vi ∼ N(0, 1). F and εi are assumed to be
independent for all i and Cov(εi, εj) = 0 when i 6= j. Then √ρi means the obligor’s sensitivity
to the common systematic factor as a linear correlation between Vi and F . The bigger the asset
correlation √ρi, the asset returns are more affected by the common systematic factor F and
less the obligor specific idiosyncratic risk εi. The obligor i’s conditional credit risk depending
on economic conditions are dominated by the only common systematic factor F that assumed
standard normal distribution because asset correlation ρi and default threshold hi are assumed
static values all time-periods under the one-factor model framework (see Hamerle et al. (2003)).
F is a factor that affects all borrowers i = 1, · · · , N commonly and is assumed can be diversified
away. We can write that the conditional default probability of obligor i is given by
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p(yi = 1|f) = P(Vi < hi|F = f) = Φ

(
hi −

√
ρif√

1− ρi

)
(3)

where f is realized systematic risk factor. Both the structural model as well as the default
intensity model on the obligor level attempt to break down systematic factor F into observable
macroeconomic or individual-specific covariates, which are called the multi-factor approach
models. And the models for exceeding default clustering use the frailty effect to explain the
excess default concentration phenomenon even if control these multi-factors.(expression by
koopman 2011 : even after controlling

For portfolio level credit risk model, Vasicek (1991) and Gordy (2003) proposed the Asymp-
totic Single Risk Factor (ASRF) model that approximates credit portfolio loss distribution
under the following assumptions known as large homogeneous portfolio (LHP). Assumption 1.
Homogeneity: Individual assets within the portfolio share the same value of risk parameters
such as asset correlation ρ and default threshold h. Assumption 2. Fine grained and Large
portfolio: Each loan size is so evenly distributed that individual loans do not dominate the
portfolio. And, there are countless (infinite) borrowers in the portfolio, so there is no contri-
bution of individual loans on the entire portfolio. This asymptotic model is based on large
number theory. This approach assumes that all obligors within each portfolio are affected
solely by a single common risk factor F and their idiosyncratic risks are diversified away.

We can omit subscript i in Eq. (3) on LHP assumption for simplicity and write the each
obligors’ conditional default probability within portfolio g as

p(y|f) = Φ

(
hg −

√
ρgf√

1− ρg

)
(4)

where the default threshold hg and the sensitivity √ρg are identical risk components in each
portfolio. This model assumes that all obligors within portfolio g are adopted the same
default probability under LHP assumptions. Thus, the asset correlation between i and j is
Corr(Vi, Vj) = ρ when i, j ∈ g and i 6= j, because ρi = ρj = ρ. We denote for the portfolio of
size n, it’s default rate Ln as

Ln =
1

n

n∑
i=1

I(Vi<hg) (5)

where I(Vi<hg) is the default indicator under the value 1 if Vi < hg, and 0 otherwise. Thus
default rate Ln on portfolio g converses to obligors’ conditional default probability p(y|f)

under LHP assumptions by law of large numbers as,

Lg = lim
n→∞

Ln = p(y|f) (6)
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.
Since the common systematic factor F is random variable on F ∼ N(0, 1) assumption, the

cumulative distribution function of unconditional portfolio loss based on LHP assumption can
drive as

F(`g;hg, ρg) = P[Lg < `g;hg, ρg] = 1− Φ

(
hg −

√
1− ρgΦ−1(`g)
√
ρg

)
(7)

where `g is a realized default rate on portfolio g. And F(`g;hg, ρg) is a function with the
identical parameters of ρg , hg and realized value `g. Not only the Basel framework but also
all most credit risk models apply the static assumption for shared identical parameters hg
and ρg within portfolio g regardless of economic condition and time. This portfolio credit risk
model has been adopted in the Internal rating-based(IRB) approach for Basel II regulatory
capital calculation and standard credit risk managing process for financial institutions. This
paper also calls Eq. (4) and Eq. (7) as “Static model” and compares with the “Time-varying
model” that we will suggest in the next section.

2.2 Time-varying risk sources

Among the components of Eq. (7), asset correlation ρg and default threshold hg are known
as important parameters in determining the shape of portfolio unconditional loss distribution
(see Gordy (2003) and Lee et al. (2020)). Especially, asset correlation ρg, which is a sensitivity
to systematic risk F is a crucial parameter in determining the tail shape when charging the
regulatory capital against financial institutions for securing financial system stability. Never-
theless, due to static assumptions on the credit risk model parameters, these models can not
reflect a comovement of assets according to economic conditions.

Our paper defines the two time-varying risk sources as asset correlation ρg,t and default
threshold hg,t to overcome static parameter assumptions using the average or conservative
value. For these purposes, we define the time-varying default threshold model that expected
default rate level implied in macroeconomic information. And, we capture the excess default
clustering above the expected default rate level using the time-varying asset correlation ρg,t

within the credit portfolio. Moreover, the frailty effect fg,t as the latent variable estimates the
residual default clustering even if remains controlled by two type time-varying risk sources.
Our approach differs from the prior models in the following terms. Firstly, all of the static
parameters for portfolio credit risk are assumed by our time-varying risk sources. All most
dynamic credit models5 assume the time-varying variable for the subset of parameters. But

5Hamerle et al. (2003) investigate the absolute value of the static asset correlation is sharply reduced in
the model that assumes the dynamic default threshold compared to the model that assumes static it. And,
dynamic asset correlation models(Lee et al. (2011); Botha and van Vuuren (2010); Siarka (2014); Stoffberg and
van Vuuren (2016)) are used to estimate the unconditional long-term default threshold.
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our model could identify all risk sources consisting of portfolio loss distribution Eq. (8) at
point-in-time. Secondly, by modeling for time-varying asset correlation within the portfolio,
most of the explanatory effect for default clustering as the frailty effect can be decomposed to
asset correlation dynamics, and the remaining default clustering could be expressed to frailty
effect.

As a result of time-varying risk sources assumption, we can modify Eq. (7) to time-varying
cumulative distribution function of portfolio loss as,

F(`g;hg, ρg) = 1− Φ

(
hg,t −

√
1− ρg,tΦ−1(`g,t)
√
ρg,t

)
(8)

. Because this function consists of all time-varying parameters (risk sources), if we could know
their estimates, then we can estimate dynamics for unconditional loss distribution of credit
portfolio point-in-time dependimg on macroeconomic conditions.

2.2.1 Time-varying macro source

The Basel committee regulates financial institutions’ risk management system under internal
rating based (IRB) rules for counterparty’s default rate. When estimating unconditional de-
fault probability (UPD) and calibrating credit rating on these rules, financial institutions
should have to use sufficiently long-term stressed default rate to cover the downturn economic
cycle under the Through The Cycle (TTC) method. This approach is only a conservative
criterion for credit rating stability and regulatory compliance, but there is a limit to actually
reflecting the risk dynamics of the portfolio by economic conditions. For example, although
the credit rating grade covers downturn periods by this approach, but it does not reflect the
volatility according to the economic cycles within grades (see Catarineu-Rabell et al. (2005)
and Kashyap et al. (2004)).

Hamerle et al. (2003) suggests the dynamic default threshold model to overcome the short-
comming of static default threshold and systematic factor F on independent and identically
standard normal distributed assumption. They point out that systematic factor F is not an
iid random variable, but an affected value for time t− 1 macroeconomic status. Thus, Rösch
(2003) as well as Crook and Bellotti (2010) suggest the setting of the default threshold as a
model affected by observable systematic factor proxies at time t−1 (e.g. lagged macroeconomic
and obligor specific covariates) unlike conventional static models. These are called point-in-
time (PIT) method models that express the dynamics and forecast the next period for default
rate.

Most PIT models focus on modeling the default rate of individual borrowers level as cor-
porate debt. But, our model targets an aggregate portfolio level loss that can be used for
the bank’s portfolio managers and regulators. In this paper, we do not consider individual
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obligors specific covariates (idiosyncratic factor) within portfolio because of the portfolio loss
distribution based on LHP assumptions in Section 2.1. And, the characteristics of the distri-
bution on credit portfolio losses may differ depending on the sector of the loan classified by
the financial institutions. So, our time-varying default threshold model defines by the type
of portfolio, respectively and each model selects macroeconomic covariates and their lagging
time τ differently.

To model the expected default rate according to macroeconomic conditions, we assume
that default rate of the portfolio g are independent given only the observable time-lagged
macro covariates zk,t−τ at time t. Under this assumption, we can denote the time-varying
default threshold model hg,t as

hg,t = β0 +

qz∑
k=1

zk,t−τβ
z
k (9)

where zk,t−τ is the k− th observable macroeconomic variable at time t− τ for k = 1, 2, · · · , qz,
and intercept β0, and parameters βzk are the sensitivities of portfolio g to common macroe-
conomic covariates. We denote a vector of observable common macro covariates as zt−τ =

(z1,t−τ , z2,t−τ , · · · , zqz ,t−τ )′. Based on this modeling property, we denote default threshold for
portfolio g using Eq. (1) as

P(Vg,t < hg,t|zt−τ ) = Φ
(
β0 +

∑qz
k=1 zk,t−τβ

z
k

)
= Φ (hg,t) .

(10)

The macro economic covariates are time-lagged in dynamic default threshold model Eq. (9)
as each of the portfolios are generally foreclosed6 after a certain period of borrower distress.
Hence, macroeconomic covariates are expected to lead portfolio defaults by time τ . This
property is the great practical importance, as it implies that portfolio’s default rate can be
forecasted using well-given macroeconomic information that is available at the time t − τ .
Forecasting the credit risk of the individual obligors may be an important process for the
monitoring of loans or the early warning of borrowers’ default event. Furthermore, earlier
perceiving the dynamics of the portfolio’s loss is a more critical issue for the portfolio managers
of financial institutions and supervisors to accomplish financial system stability. This paper
is interested in four quarters relation of default threshold and time lagged macro covariates as
τ = 1, 2, 3, 4. This model examines the dynamics of expected default rate level Φ (hg,t) for the
portfolio from the observable macroeconomic information.

Each portfolio time-varying default threshold models estimate by following the three-step
tests. Step 1 : After selecting the first candidate covariates through the previous research7,
in order to capture the time lagged relationship between each economic covariate zk,t−τ and

6Foreclosure is the default criterion in the empirical analysis.
7More detail studies for macroeconomic covariates to relate credit risk by loan type are in section 3.1.
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the default threshold hg,t = Φ−1(`g,t) on portfolio g. We examine the second candidate
covariates are selected by considering the significance of cross-correlation statistics and an
explanation8 of the economic model simultaneously. Step 2 : The multicollinearity and model
explanatory power check for temporal multivariate regression analysis using macroeconomic
covariates selected Step 1. In this step, we choose the third candidate for the final model. Step
3 : The time-varying default threshold model and the time-varying asset correlation model
in the section 2.2.2 are optimized simultaneously when estimating the final time-varying loss
distribution Eq. (8).

2.2.2 Time-varying asset correlation

We define the ρg,t is the time-varying asset correlation of portfolio g at time t for t = 1, 2, · · · , T
as,

ρg,t = Λ̃

(
αg,0 + αg,1ρg,t−1 + αg,2

1

S

S∑
s=1

(
Φ−1 (ug,t−s)

)2) (11)

where Λ̃(x) = (1 + e−kx)−1, k > 0, −∞ < α0 < ∞, α1 ≥ 0, and α2 ≥ 0. The logistic
transformation is intended to limit 0 to 1 the bounds of estimates in the time-varying as-
set correlation model. The univariate variance term ug,t−s is the estimated portfolio loss
F(`g,t−s, hg,t−s, ρg,t−s) on sector g at time t − s given hg,t−s|t−s−τ and ρg,t−s. We modify the
original specification of Patton (2006) that used the covariance terms between high-frequency
exchange rates for time-varying conditional dependence, but our model is different in using the
univariate variance term instead of them. Our time-varying asset correlation model Eq. (11)
can modify the multi-variate covariance term to the univariate variance under the homogen-
eity assumption of assets within the portfolio under the LHP assumption in section 2.1. This
setup is similar to the GARCH(S,1) type process for the volatility model. Our model assumes
that asset correlation at time t consists of two terms. First, through the auto-correlation term
of asset correlation just before (time t− 1), it intends to reflect the long-term memory of the
average relation among assets in the loan portfolio. This approach is similar to Duffie et al.
(2009) in terms of the AR(1) process assuming for the frailty to capture the default clus-
tering. The second term, the moving average of the univariate volatility from the estimated
endogenous loss distribution at time t − s is used to model the persistence of the impact of
portfolio loss due to the economic fluctuations. This is the setting of a model to reflect the
impact of short-term uncertainty in the loss distribution inherent in the asset correlation and
macroeconomic covariates during the t− s period using the GARCH type model. The impact
persistence of these shocks also varies depending on the loan type by portfolio, so it is set up

8It means that our selective rule is based on the sign of the correlation between credit risk and macroeconomic
covariate in previous literature.
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respectively.
We can represent cumulative distribution function for time-varying portfolio loss rate in

Eq. (8) with time-varying default threshold in Eq. (9) and time-varying asset correlation in
Eq. (11). And then, using the realized portfolio g’s default rate `g,t at time t, we can estimate
parameters in the time-varying models from the probability density function (PDF) of Eq. (8)
by Maximum Likelihood Estimation (MLE) methods.

More detail for the PDF and MLE methods for time-varying or static portfolio loss are in
Appendix 2. We can write the product of likelihood at each time t as,

max
θ

N∏
t=1

√
1− ρg,t
ρg,t

· exp
[

1

2ρg,t

(
hg,t −

√
1− ρg,tΦ−1(`g,t)

)2] · exp [1

2
(Φ−1(`g,t))

2

]
(12)

where θ = (αg,βg
z)′ are the time-varying asset correlation model parametersαg = (αg,0, αg,1, αg,2)′

in Eq. (11) and the time-varying default threshold parameters βgz = (β0, β
z
1 , β

z
2 , · · · , βzk)′ in

Eq. (9) from the lagged economic coavriates. If we know the time-varying models’ parameters
θ, then we can get the estimates of time-varying default threshold hg,t and asset correlation
ρg,t point-in-time. This means we are able to examine the dynamics of the unconditional loss
distribution F(`g,t, hg,t, ρg,t) in Eq. (8) at each observation time t.

2.3 Risk sources decompositon and contribution

2.3.1 Risk sources decompositon

The fluctuation of portfolio loss under the static parameters assumption model Eq. (4) is
dominated by systematic common one factor. But our time-varying models in previous section
2.2, that decompose various risk sources dynamics as the expected default rate level Φ−1 (hg,t)

from macroeconomic information and the asset correlation ρg,t from contagion effect. And,
we define the residual effect of systematic common factor as “frailty effect” fg,t that even
controlling the two estimated time-varying risk sources.

From conditional portfolio default rate in Eq. (4) given time-varying risk sources and
realized default rate at time t, we can summarize for pure frailty effect fTVg,t on portfolio g at
time t as

fTVg,t =
hg,t −

√
1− ρg,t · Φ−1(`g,t)
√
ρg,t

(13)

Apply the above approach Eq.(13) to static model Eq. (4), we can estimate the frailty
effect fStg under static risk sources assumption similar to frailty effect in previous literature
(Lee and Poon (2014),Duffie et al. (2009), and Koopman et al. (2011). etc.). In the empirical
study in Section 3.4, we compare the contributions of fStg , fTVg,t , and another frailty effect
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under partly static parameter assumption to check the adequacy of time-varying risk sources
model for default clustering.

Despite the effort attempt to describe the default clustering by many macroeconomic or
obligor specific covariates in the previous static parameter assumption models, but remain the
significant frailty effect for default clustering as an unexplainable latent factor. Our estimated
pure frailty fTVg,t remains latent factor characteristic yet, but a significant part of the frailty
effect fStg on static assumption has been removed by the asset correlation dynamics.

2.3.2 Risk sources contribution

If the portfolio managers could identify actual risk sources and measure their contributions
exactly, they could control the credit risk as hedging or other portfolio rebalancing strategies9.
In this section, we propose the Hoeffding decomposition method using the conditional copula
simulation to estimate the contribution for portfolio losses from estimated risk sources in
our time-varying model. The Copula function10widely is used in financial applications11 for
decoupling a multi-variate joint distribution to marginal distributions and their dependence
structure. And the Hoeffding decomposition12 is a familiar method decomposing for factor
contributions in risk management fields. In particular, Rosen and Saunders (2010) as well as
Lee and Poon (2014) show that the portfolio loss as a random variable can be decomposed
as the sum of expected loss given all subsets of systematic risk factors (e.g. macroeconomic
or frailty). They measure the contributions of the loss distribution for each factor using a
linear additive multi-factor model as extended for systematic factors. However, Tasche (2008);
Cherny et al. (2010) show that the Hoeffding decomposition can be used to decompose the
effects of nonlinear factors.

We present the simple example case for decomposing two factors F1 and F2 to understand
in the Hoeffding decomposition method. We can write the portfolio loss L = H(F1, F2) as

L = E[L|·]
+(E[L|F1]− E[L|·]) + (E[L|F2]− E[L|·])
+(E[L|F1, F2]− (E[L|F1]− E[L|·])− (E[L|F2]− E[L|·])− E[L|·])

(14)

where the PDBase = E[L|·] term in first row Eq. (14) is the base level of default rate
(unconditional expected loss level as constant) without any risk factors. The E[L|F1] and
E[L|F2] terms in second row denote the expected portfolio loss E[L] given factor F1 and
F2, respectively. And the RCFk = (E[L|Fk] − E[L|·]) operations owing to estimate pure

9Asset allocation, Risk budgeting, etc.
10The full description and mathematical backgrounds are in Nelsen (2007) and Catarineu-Rabell et al. (2005).
11The various applications of copula function are described in McNeil et al. (2015),Patton (2006), and Lee

and Yang (2019).
12The original development methodology is described in Van der Vaart (2000).
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risk contribution from factor Fk controlled the base default rate level PDBase. The term
of last row represents the residual risk contribution RCF1,F2 controlled individual risk factor
contribution RCFk and base default rate level PDBase. This means the pure expected loss
given comovements in the factors F1 and F2.

Our decomposing method extends Eq. (14) to three risk sources for within portfolio risk
contribution. Among them, we are interested in the following four terms in order to capture
the pure contribution of each source at time t and the base expected loss level on portfolio
g. The conditional expected losses given the risk sources within portfolio denote the risk
contributions as

PDg,Base : E[Lg,t|·]
RC

Φ(hg,t)
g,t : (E[Lg,t|Φ (hg,t)]− E[Lg,t|·])
RC

ρg,t
g,t : (E[Lg,t|ρg,t]− E[Lg,t|·])

RC
fg,t
g,t : (E[Lg,t|fg,t]− E[Lg,t|·])

(15)

The PDg,Base = E[Lg,t|·] term represents the base expected loss level in portfolio g. This
term means the level of unconditional expected loss without any risk sources as constant
value. And, the other terms RCΦ(hg,t)

g,t , RCρg,tg,t , and RCfg,tg,t in Eq. (15) are denoted the pure
risk contributions even controlling PDg,Base on portfolio g at time t from each risk source
Φ (hg,t), ρg,t, and fg,t, respectively.

However, in estimating process for the risk contributions, we can not know the joint density
of the portfolio loss given estimated risk sources at time t since the only one observation
point of them at each time. Thus, we suggest the conditional copula simulation method
that estimates the joint distribution by the kernel density based on the empirical dependence
structure between portfolio loss and estimated risk sources. For this purpose, we apply the
Novosyolov (2017) method for conditional distribution for portfolio loss given risk sources
at time t. The expected values are calculated for the conditional loss distribution using 1
million Monte Carlo simulation reflecting the Gaussian copula dependence structure from the
empirical kernel joint density. Through this process, we estimate the risk contributions of the
portfolio loss from each risk source as presented in the empirical study of Section 3.3.1.

Moreover, we extend the within portfolio method Eq. (15) to the cross-sectional dimension
to estimate the risk contagion effect by simulating the expected loss on portfolio g given the
causative sector’s risk sources. For this purpose, we define the pure risk contributions as
RC

Φ(hc,t)
g,t , RCρc,tg,t , and RC

fc,t
g,t that are expected loss E[Lg,t] on portfolio g controlled PDg,Base

given the risk sources of causative sector c as Φ (hcause,t), ρcause,t, and fcause,t, respectively,

RC
Φ(hc,t)
g,t : (E[Lg,t|Φ (hc,t)]− E[Lg,t|·])
RC

ρc,t
g,t : (E[Lg,t|ρc,t]− E[Lg,t|·])

RC
fc,t
g,t : (E[Lg,t|fc,t]− E[Lg,t|·])

(16)
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For example in our empirical results, we designate the causative sectors as the "Business"
and the "Mortgages" for DBC and GFC crisis, respectively, and present them in Section 3.3.2.
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3 Empirical Analysis

3.1 Data

For the empirical study, we use the quarterly loan sector level aggregated charge-off rates
of the U.S. commercial banking system. These data are collected from the Federal Deposit
Insurance Corporation(FDIC)13 by loan type of six sectors including “Mortgages” (Real Estate
Loans Secured by 1-4 Family Residential Properties.), “Business” (Commercial & Industrial
Loans to U.S. Addressees.), “Credit Cards” (Credit cards.), “Individuals” (Other Loans to
Individuals.), “Rest” (All Other Loans.), and “Lease” (Lease Financing Receivables.) during
1984:Q1~2019:Q3. These series include debt information from all companies and individual
owners who are affiliated with the FDIC. These are employed by Ferrer et al. (2014), and similar
to the previous studies using portfolio level default frequency (See Rosch and Scheule (2004);
Lee and Yang (2019)). During the entire data period, we use the sub-period from 1990:Q1 to
2019:Q3 since all data of six research categories (sectors) are represented. The definition of
obligors’ default is the loan of 90 days delinquency14 referred by Federal regulatory institutions.
We calculated the loan sectors’ charge-off rates as the amounts of total charge-offs dividing
by the average outstanding loans each quarter. To obtain the annualized rates, we multiplied
each quarterly charge-off rates by factor 4, because banks commonly measure credit risk over
the one-year horizon. These series overlaps the three times economic downturn periods in the
U.S. that have been defined by the National Bureau of Economic Research (NBER)15. These
business cycles are CREC (the commercial real estate crisis during 1990:Q3~1991:Q1), DBC
(the dotcom bubble crisis during 2001:Q1~2001:Q4), and GFC (the Great Financial Crisis
during 2007:Q4~2009:Q2) that pointed to gray area in Fig. 1. However, in the empirical
study in Section 3 presented only the analysis results 1991:Q2~2019:Q3, excluding the initial
values ut−s used for estimating the time-varying asset correlation model in Eq.(11).

Fig. 1 displays the charge-off rates of aggregated portfolios by sector. The charge-off rates
were increasing stand out in almost all sectors around crisis windows. Each sector’s charge-off
increase with a slight time lag from the defined economic crisis period. This is a result of the
definition of default by the 90 days delinquency and the time lag between the deterioration of
the economic condition and obligors’ financial states.

[Table 1 is here.]
Table 1 shows the descriptive statistics for 119 quarterly charge-off rates by sector. For

exposure by sector, the Mortgages is the most at 46%, while the Lease has the lowest at
around 3%. In particular, because the Mortgages and the Business account for around 70%

13The Loan Performance data is in https://www7.fdic.gov/idasp/advSearch_warp_download_all.asp?intTab=4
14This rule provides a good reason for using lagged macroeconomic variables for market expectation PD

when build up the time-vary default threshold model in Section 2.2.1.
15https://www.nber.org/cycles.html
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of the total loan market, the default rates in these two sectors are the most important for
capturing the soundness of credit risk for the entire loan market. The Mortgages has the
lowest default rate of 0.5% among all sectors. Also, the standard deviation of charge-off rate
show a relatively low compared to the Business and the Creditcards sectors. In contrast, the
Creditcards sector’s charge-off rate displays the highest level and the biggest volatility among
all sectors. As shown in Fig. 1, the volatility of the Creditcards is large during the crisis,
this sector is most prominent for the default clustering. It should be noted that unlike other
sectors, the Creditcards sector has the uniqueness as a high-level default rate that maintains
a certain level for default even when the economy stabilizes.

And the charge-off distributions show the high left skewness in all sectors, it shows the fat-
tail characteristics of the default data as compared to a normal distribution. This asymmetric
unconditional loss distribution means that the default events concentrate in the economic
downturn as called the default clustering. During the crisis periods in Fig. 1, each sector
shows the default clustering, and the GFC around 2008 is the biggest impact for all sectors
among the three crises. We should be noted that the dynamics of default rates in each sector
differ from each economic crisis. For example, the Mortgages does not show significantly
variability during other crises except the GFC while the Business and the Creditcards are seen
as the most sensitive sectors in every crisis.

Many previous studies of credit risk fields have highlighted the economic adaptability for
credit risk. For the corporate exposures, the significant macro economic covariates include
the Real GDP growth, the S&P500 index return, the 3-month T-bill rate, and the spread
between 10-year and 1-year Treasury note rates (see Koopman et al. (2011) and Duffie et al.
(2009) etc.). The retail exposures relate to the GDP growth rate, the Unemployment rate,
and the 3-month real interest rate (see Jiménez and Mencia (2009) as well as Lee and Poon
(2014). etc.). For non-performing loans are surely explained by the GDP growth, the 30-year
mortgage rate, the Consumer price index, the Industry production, the Prime loan rate, and
the Housing price index (see Betz et al. (2020) and Ghosh (2017). etc.). In our time-varying
default threshold model Eq. (9) is assumed to consist of lagged macroeconomic covariates by
sector in order to identify the risk source hg,t for portfolio credit loss. And we use the expected
loss Φ (hg,t) from the macroeconomic information at time t − τ . Based on previous research
for the correlation between macroeconomic covariates and credit exposure, we consider for
seasonally adjusted macro variables as the real GDP (GDP), the House Price Index (HPI),
the Consumer price index (CPI), the Unemployment rate (UMEMP), and debt to income ratio
(DTI) from Federal Reserve database. The market-based indicators are used the S&P500 index
return (S&P500), the 1-year Treasury note rate (T_1Y), the 10-year (T_10Y), the interest
rate spread between 10-year and 1-year Treasury note rates (Curvature), the 3-month T-bill
rate (TB3MS), the TED Spread rate (TED) and the bank prime loan rate (Prime) in the
Federal Reserve Economic Data. A total of 12 macroeconomic and market covariates are used
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in the three-step tests in section 2.2.1 for the time-varying default threshold (PD) model as
raw data or differential terms.

3.2 Time-varying risk sources

Before examining the results of the time-varying models, we check the results of the static
parameter model Eq. (7) for the portfolio by sector in Table 3 Panel C. This approach is similar
to the current credit risk management standards for regulatory capital using the conservative
risk parameters. The estimated expected loss PDg = Φ (hg) are similar level by sector to
the mean of charge-off rates in Table 1. The estimated ρg for each sector portfolio represents
by sector, respectively, which means the sensitivity to the common systematic risk factor is
different for the loan type. These results show that the asset correlation rules by loan type
in Basel are appropriate (see Committee et al. (2005) and BCBS (2019)) and the consistency
of previous literature which suggest the vary asset correlation by loan sector (see Dietsch and
Petey (2004a) and Bandyopadhyay et al. (2007). etc). Retail-related sectors with high default
rates such as the Creditcards (1.9%) and the Individuals (1.6%) represent the relatively low
asset correlation, while the Mortgages (10.4%) shows the high with a low default rate. These
results support the Basel’s decreasing function between default rate and asset correlation for
the cross-section point of view. However, various empirical studies are examined the different
results for the cross-sectional relations of the asset correlation and the default rates. They
investigate that the relations can be positive or U shape according to credit grades or variety
categories-size, industry, country, etc. (see Perli and Nayda (2004), , Düllmann and Scheule
(2003), Dietsch and Petey (2004b), and Bandyopadhyay et al. (2007)etc.).

In the regulatory model based on the ASRF, the common systematic factor, which reflects
the economic conditions, is integrated out in process of the driving unconditional loss distribu-
tion in Eq. (7). Thus, Basel recommends using sufficiently long-term data to reflect economic
cycles include downturns when estimating risk components. Similarly, the default correlation
among obligors within the portfolio expressed as asset correlation provides only the conser-
vative criteria base on empirical results for G10 supervisors’ data sets (see Committee et al.
(2005)). But, these rules have an inevitable limitation in reflecting the change of economic
condition point-in-time, even if the average value includes the extreme downturn. The risk
sources within the portfolio are inconsistent and varies with changes in economic conditions.

Therefore, this paper estimates the dynamic portfolio loss models in Eq. (8) that applied
the time-varying risk sources assumptions to default threshold hg and asset correlation ρg

which are the static parameters in unconditinal portfolio loss distribution in Eq. (7). The
time-varying default threshold hg,t and time-varying asset correlation ρg,t can identify the risk
sources of realized portfolio loss.
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3.2.1 Time-varying expected portfolio loss from macro

The first step is the time-varying modeling the portfolio expected loss Φ (hg,t) using solely
lagged macroeconomic information zk,t−τ in Section 2.2.1, we examine the cross-correlations
between the time-lagged 12 macroeconomic covariates16 and realized default thresholds Φ−1 (`g,t)

by sector as shown in Table 2. We denote the τ−th cross correlations between realized default
threshold of sector g and macro variable zk are Corr(Φ−1 (`g,t) , zk,t−τ ).

[Table 2 is here.]
Each sector has slightly different covariates affected by the time difference, but the GDP

growth (GDP diff), the Unemployment growth (Unemployment diff), the One-year interest
rate change (T_1Y diff), and the Stock index (S&P500) show leaded cross-correlation across all
sectors. Especially, the Debt-to-income ratio (DTI) and the TED Spread (TED) are significant
explainable time leading covariates that the correlation of 4 quarters are strongest for the
portfolio credit risk in all sectors except the Mortgages. In almost all sectors, the fourth-
quarter time-lag covariates show a stronger correlation than others. In practice, these time-
lagged covariates are important because they can be used to forecast increases in the sectors’
credit risk even considering the timing of the announcement for economic variables and the
charge-off rate data using 90 days delinquency. The Business and the Lease are found to be
correlated with various economic covariates more than others.

Table 3 Panel A-1 shows the parameters βzk of the time-varying default threshold model in
Eq. (10) applied the three steps process described in Section 2.2.1. Most of the covariates se-
lected in the final models are among those with strong time-lags correlation in cross-correlation
analysis in Table 2.

[Table 3 is here.]
The DTI ratio (time lag 4) associated with debt repayment capability is chosen as a sig-

nificant covariate across all sectors except for the Mortgages. This sector’s default rate is
negatively affected by changes in the HPI index (time lag 4) and the GDP growth (time lag 4)
which are not selected in other sectors. These results show that assets of the Mortgages, the
Business, and personal-related sectors (the Individuals, the Credit cards) differ in macroeco-
nomic covariates to consider depending on loan type. In this way, the time-varying expected
loss can be estimated using only exogenous economic variables, and their estimates display the
PDg,t = Φ (hg,t) in Fig. 2. Moreover, the expected losses of unconditional loss distribution
under static parameter assumption present the PDg = Φ (hg) in Fig. 2 and Table 3 Panel C.

16Total : 24 macroeconomic covariates (Raw data and similar differential terms-The GDP and the HPI are
used to growth rate scale) in Section 3.1.
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3.2.2 Time-varying asset correlation model from contagion

Table 3 Panel B shows the model parameters of ρg,t in time-varying asset correlation in Eq.
(11). The estimated parameters αg = (αg,0, αg,1, αg,2)′ are very significant over all sectors.
The αg,1 means to the relationship between ρg,t and ρg,t−1 for capturing the long-term memory
of asset correlations over time. In other words, the positive significance sign of the bigger αg,1
means that asset correlation accelerates when it begins growing in economic downturns or
upturns. Our results that the estimates of αg,1 are significant and positive in all sectors. This
means that αg,1 is able to capture the auto-regressive characteristic for the default clustering
similar to the frailty effect in previous studies. The persistence over the previous s lags time
for short-term impact αg,2 are significant across all sectors. It reflects the volatility of the loss
from dynamics for asset correlation within the portfolio and external macro shocks during s
times. In summary, this model has combined the long-term trend effect αg,1 and the variability
effect from short-term shocks αg,2 for asset correlation within the portfolio.

[Figure 2 is here.]
Fig 2 shows the estimates of time-varying asset correlation risk source ρg,t at time t by

sector with other estimated risk sources. The Creditcards (c), where the level of default and
its volatility are higher than other sectors, presents the low-level asset correlation similar to
the static model, although some increase around GFC and DBC. This sector’s estimated para-
meters in Table 3 Panel B present the relatively larger αg,2 and smaller αg,1 than others. This
means the Creditcards asset correlation is more affected by short-term shocks rather than
long-term time dependence on them compared to others. Also, the mean of time-varying es-
timates presents the lowest level along with the Individuals similarly the results of static model
ρg in Table 3. Panel C. These are called retail sectors, and the assets in the portfolio consist
of a large number of borrowers and small-size exposure with relatively well-diversification.
The default rate of the Creditcards `Creditcards,t is high due to a little (minor) delinquency
for retail-related debt, but the asset correlation ρCreditcards,t does not increase even in the
economic crisis. High volatility for default rate during the economic downturn is due to also
the base effect of the usual high default level even though normal economic conditions. The
evidence for this phenomenon can be confirmed through the low level of relative standard de-
viation (RSD) in Table 1. These results remind the retail loan portfolios are a low systematic
risk exposure resulting from macroeconomic changes rather than idiosyncratic factor effects.

The Mortgages (a), which has the lowest default rate, is a very important sector considering
the about 46%17 average market exposure weight and the variability in asset correlation during
the economic crisis event periods. Asset correlation show a rapid increase since the 2008
GFC period and had continuously large volatility. And it was increasing sensitively to small
economic shocks and reaching a peak in 2012. This means that the time gap between the

17The average weight of exposure by sector are described in Table 1.
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recession and the default clustering of borrowers appears relatively slower than other loan
sectors, and the shock of the recession continues for a considerable period of time and the
default clustering is continuing. This shows that even if macroeconomic variables are recovered
after the economic crisis, there is a time difference reflected in the stability of the credit
portfolio. And the default clustering in this period can be underestimated by the expected
default model by economic variables. In other words, the uncertainty that cannot be explained
by observable covariates during the economic crisis has appeared, which can have the effect of
underestimating the tail risk when evaluated by a static model. Based on the simultaneous or
very small time difference between the increase in the default rate and the increase in asset
correlation during the economic crisis, Basel’s decreasing relation assumption is considered
inappropriate to explain the default clustering during the economic crisis. Basel suggests the
lower bounds for asset correlation function to compensate for its shortcomings. It is only
a conservative approach for maintaining financial system stability, but there is a limit to
identifying actual dynamics of risk sources that increase portfolio loss.

Particularly noteworthy is the different sector in which default clustering are concentrated
in each economic crisis, and the dynamics of asset correlation are also different in each sector
in each crisis. For example, looking at the Mortgages and the Business sectors can identify
different movements of default rates and their risk sources by the crisis. In the case of the
Mortgages, neither the default rate nor the asset correlation show large variability during
the 2002 DBC but present sharply increasing and volatile during the 2008 GFC, indicating
that it was the cause of the economic crisis. In contrast, in the case of the Business sector,
default clustering is more prominent during the GFC, but asset correlation variability is greater
during the DBC. The collapse of the Dotcom bubble seems to have caused default clustering
as increasing the asset correlation (uncertainty) among the corporate obligors in the Business
sector. These suggest that the causes of each economic crisis are different, and the increased
risk in the origin sector that contributes may have caused the risk contagion to other sectors and
lead to the overall economic crisis. Therefore, we simulate the contribution of each estimated
risk source to the within portfolio loss as well as to the other sectors’ one in the next Section
3.3.

Considering the effect of the two sectors as account for 70% of the total loan market, the
default clustering occurring in different sectors during each crisis can be said to be a contagion
or spillover effect throughout the entire economic system.

3.3 Contribution of risk sources

3.3.1 Risk source contribution within sector

Decomposing each source for the credit portfolio and measuring their contribution point-in-
time could greatly utilize to ensure diversity in efficient hedge and portfolio optimization.
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Thus, we present the contributions of estimated risk source point-in-time by sector in Fig
3 employed the Hoeffiding decomposition method using the conditional copula simulation in
Section 2.3.2 and Appendix 3.

[Figure 3 is here.]
Fig. 3(a), 3(b), 3(c), 3(g), 3(h), and 3(i) show the partial expected losses within the

portfolio given by each risk source. These were defined risk contribution RCrisk sourceg,t in
Section 2.3.2. In other words, they present the portfolio base default rate PDg,Base unrelated
to any given risk sources, the contribution RC

Φ(hg,t)
g,t of the expected default rate from the

lagged macroeconomic variable, and the contribution RC
ρg,t
g,t of estimated asset correlation

within the portfolio g, respectively. And, Fig. 3(d), 3(e), 3(f), 3(j), 3(k), and 3(l) in the
second row show the estimates of the time-varying risk sources Φ (hg,t), ρg,t, and realized
charge-off rate `g,t, allowing each sector to compare estimates and contributions to portfolio
losses.

The base level of default rates PDg,Base present the lowest the Mortgages (0.26%) in Fig.
3(a) and the highest the Creditcards (5.33%) in Fig. 3(c), similar to the descriptive statistics
in Table1. This shows that the default rate per se is low (high) even if the Mortgage (the
Creditcards) sector does not consider any risk sources. Furthermore, it can be seen that the
most important factor in determining the portfolio losses in normal economic conditions is
the base default rate of the portfolio per se. However, during the economic crisis, all sectors
except retail-related sectors (the Creditcards (c) and the Individuals (d)) present a sharp
increase in the contributions RCΦ(hg,t)

g,t and RC
ρg,t
g,t from risk sources, consequently exceed

the contribution PDg,Base when default clustering occurs. What is the unusual point is that
even in the economic crisis, retail-related portfolio losses are affected by more on the portfolio
base default rate PDg,Base than risk sources such as macroeconomic conditon Φ (hg,t) or asset
correlation ρg,t. These sectors show that base default rates are the most important component
in determining portfolio losses, although the contribution of different risk sources varies with
economic fluctuations.

As shown the Mortgages (a) in Fig. 3, the contribution RC
Φ(hMortgages,t)
Mortgages,t for expected

loss from macroeconomic covariates is rapidly increasing and then decreasing after as soon as
the GFC. However, the realized default rate `Mortgages,t in Fig. 3(d) shows that the default
clustering is continued without decreasing after the increase. At this time, the contribution
RC

ρMortgages,t

Mortgages,t from asset correlation risk source in Fig. 3(a) has risen sharply, offsetting the

decrease in the contribution RC
Φ(hMortgages,t)
Mortgages,t from macroeconomic covariates. As a result, the

default clustering of the Mortgages sector in early the GFC origin from the expected default
rate which is reflected in the macroeconomic shock. And after the macroeconomic covariates
stabilized, the default rate did not decrease sharply because the asset correlation increasing.

In addition, the contributions RCΦ(hg,t)
g,t from macroeconomic covariates have shown a
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sharp rise during the GFC in all sectors, as well as the Mortgages. These default clustering in
most sectors are considered a predictable increasing for expected default rates by the recession
based on observable macroeconomic information. The evidence, which such a predictable
rising in default rates do not consider as uncertainty for other affected sectors, is that the
contribution RC

ρg,t
g,t of asset correlation in each sector does not present variability in GFC.

Based on the results so far, the collapse of the Mortgages during the GFC is affecting the
default clustering in other loan sectors by the channel of observable macroeconomic covariates.
From a similar point of view, the Business sector’s asset correlation contribution RCρBusiness,tBusiness,t

and the macroeconomic contribution RC
Φ(hBusiness,t)
Business,t in Fig. 3(b) exceed the PDBusiness,Base

during the DBC crisis, but the asset correlation contributions RCρg,tg,t in other sectors do not
variability significantly.

In summary, the base default rate PDg,Base within the portfolio is the most component
for determining the portfolio loss in normal economic conditions, and in the crisis periods, the
default rate increasing is able to express the expected default rate Φ (hg,t) from observable
macroeconomic covariates and the uncertainty as asset correlation ρg,t.

3.3.2 Risk source contribution across sector

We checked that each crisis originated from different sectors and each causative sector’s default
clustering contagious to the default of other sectors through channels such as macroeconomic
covariates. In this section, we also simulate RCΦ(hc,t)

g,t and RCρc,tg,t defind for the contribution
from the risk sources of the causative sector c to the default rate `g,t of affected sectors. Based
on results in Section 3.3.1 and prior knowledge, we choose the Business as the cause of the DBC
and the Mortgages as GFC, then present the expected loss using the Hoeffiding decomposition
by the across-sector conditional copula method defined in Section 3.3.2. More detail describes
the simulation procedure in Appendix 3.

Fig. 4 and 5 represent the risk contributions RCΦ(hc,t)
g,t and RC

ρc,t
g,t for the realized loss

`g,t of affected sectors g given the risk sources Φ (hcause,t) and ρcause,t of the Business and the
Mortgages sector, respectively. The first row (a), (b), (e), (f), and (g) in each figure present
the conditional expected loss RCρc,tg,t and RCρg,tg,t on portfolio g given the each estimated asset
correlation risk sources ρcause,t and ρg,t. And, the second row (c), (d), (h), (i), and (j) in each
figure show the conditional expected loss RCΦ(hc,t)

g,t and RCΦ(hg,t)
g,t on portfolio g given the each

estimated macroeconomic risk sources Φ (hcause,t) and Φ (hg,t). In this analysis, we confirm
the different contagion channels by each crisis that different causative sectors.

Contagion effect from the Business sector during DBC The DBC economic crisis
around 2002 was caused by the “Venture boom” of the “.com” corporates since the late 1990s.
This collapse has become particularly concentrate on the defaults of corporate obligors, then
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we set the causative sector of the DBC economic crisis as the Business and investigate risk
contagion effect to other sectors.

[Figure 5 is here.]
As shown Fig. 5(a), 5(b), 5(e), 5(f), and 5(g) during the DBC, the loss contributions

RC
ρBusiness,t
g,t in all most sectors from the Business sector’s asset correlation present instantly

significant increase except the Mortgages. Moreover, rather than the increase in asset cor-
relation RC

ρc,t
g,t within the portfolio, they represent that the increase in asset correlation

RC
ρBusiness,t
g,t from the Business contributes significantly. In particular, the Creditcards (c)

is most affected sector, and changes are notable in retail-related sector such as the Individuals
(f).

As shown Fig. 5(c), 5(d), 5(h), 5(i), and 5(j), the contributions RC
Φ(hBusiness,t)
g,t and

RC
Φ(hg,t)
g,t of expected losses implied in macroeconomic covariate increase with slight time

lag in all sectors except the Mortgages. In particular, the Creditcards (d) is representing a
significant increase compared to other sectors, because relative macroeconomic covariates for
the Creditcards default rate consist of a subset in the Business sector’s one shown as Table 3.
Panel A-1. Moreover, in the case of the HPI and the Unemployment covariates, the time lags
are also greater the Creditcards than the Business resulting in a more time difference and an
increase in the contribution to the loss.

Contagion effect from the Mortgages sector during GFC The Mortgages sector
collapse, which known as the cause of the GFC crisis, contributes to the loss of other sectors
as shown in Fig. 4. As shown (a), (b), (e), (f), and (g), the risk contribution RCρMortgages,t

g,t of
asset correlation from the Mortgages is stable in this period. This means that the rapidly in-
creasing asset correlation ρMortgages,t of the Mortgages during the GFC crisis does not directly
contagious to the risk of other sectors by the channel as asset correlation.

[Figure 4 is here.]
As shown Fig. 4(c), 4(d), 4(h), 4(i), and 4(j), the contribution of expected default rates

from macroeconomic covariates also present as greater from the Mortgages RC
Φ(hMortgages,t)
g,t

than from within portfolio RCΦ(hg,t)
g,t . However, the contributions RCΦ(hg,t)

g,t from macroeco-
nomic covariates in each sector have been increasing rapidly. In particular, the Business,
the Creditcards, and the Rest sectors are presenting remarkable variabilities. These are due
to results in Table 3 Panel A-1 , which the relevant macroeconomic covariates differ to the
Mortgages and other sectors. This implies that although the losses of affected sectors are
not relevant to the covariates of the Mortgages sector, their covariates are exacerbated by the
collapse of the Mortgages then increasing macroeconomic risk source contribution RCΦ(hg,t)

g,t

within the portfolio.
Eventually, the default clustering of the Mortgages during the GFC did not directly con-

tagious to other portfolios, but has a negative impact on the economy. Thus we can identify
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the macroeconomic covariates as risk contagion channel. This means that the collapse in the
Mortgages during the GFC crisis roles as a systemic risk event for the entire financial system
similar as in Lee and Yang (2019). A noteworthy point is that the deterioration of macroeco-
nomic conditions has led to the default clustering of other sectors, but the asset correlation in
each sector has not increased significantly. This can be reaffirmed that the predictable risk is
not considered the uncertainty, and do not present the additional increase of asset correlation
among obligors.

3.4 Compare the frailty effects

To check the adequacy of our time-varying risk sources model, which is decomposed the frailty
effect into asset correlation dynamics and pure frailty effect, we examine the residual frailty
effects with employ various assumptions to risk sources of portfolio loss. Fig. 6 shows the
contribution RCfg,tg,t for within portfolio loss from residual frailty effects in Section 2.3.1.

[Figure 6 is here.]
The Fig. 6 shows that the dynamics of residual frailty effects based on a static parameter

assumption model Eq. (4) are similar to the default clustering by each sector. However,
the residual frailty effect based on the time-varying risk sources model Eq.(13) show the more
random dynamics that eliminate the effects of many default clustering although some volatility
remains during the economic crisis.

Our time-varying methods are intuitive and can be represented by the dynamics of asset
correlation on the basis of the regulatory framework without expansion of systematic factors,
for the default clustering explanation effects of frailty presented in previous studies (see Duffie
et al. (2009); Koopman et al. (2012); Lee and Poon (2014). etc.). Moreover, we can evaluate
the time-varying parameter assumption model better represents the dynamics of the portfolio
realized loss `g,t by at the Log-likelihood values of each model presented in the last row of
Panel B and Panel C in Table 3. Although not reported, the log-likelihood ratio tests for the
static vs the time-varying model have shown significant results at the confidence level of 99.9%
in all sectors.
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4 Conclusion

In managing and regulating the credit risk of loan portfolios, measurement and rational estim-
ation of their risk sources are very important for both regulators and financial institutions. Our
paper has presented simple and easy methods for time-varying credit portfolio loss distribution
and for their sources decomposing base on the ASRF model under the LHP assumption, which
is the basis for the standard credit risk management process. And, we propose a procedure
for estimating the contribution of risk sources and for managing them when the economic
conditions are given at each point in time. Furthermore, we investigate that the frailty effect,
which is considered an latent factor to explain the exceed default clustering, can be divided
into time-varying asset correlation dynamics and frailty effect. Our proposed methods are able
to reduce the model risk for Basel’s one-factor model under static assumptions by monitoring
the default clustering occurring during the crisis into observable and controllable risk sources.
Our methodology could identify not only the cross-sectional diversity (eg. sector, region, credit
grade etc.), but also the dynamics of loan assets comovement that comprises the portfolio held
by financial institutions.

With empirical application, we show that the contributions of time-varying risk sources for
portfolio loss are different in normal or crisis economic conditions. During the normal economic
conditions, the base default rate level is the most important source to determine the portfolio
loss than other risk sources. But, the effects of macroeconomic and asset correlation are
increasing during the crisis resulting in the default clustering within portfolio or the financial
systemic risk. In particular, the dynamics of risk sources are different in the causative sector
and affected sector. The origin sectors of each crisis show the rapid increase in asset correlation
because of the uncertainty from the exceeding default clustering over the expected default
rate inherent in macroeconomic variables. And, there is the contagion effect to other sectors
through the channel for macroeconomic variables or asset correlation according to type of each
crisis. In the case of affected sectors, the contagion channels are found to be most affected
by macroeconomic variables, followed by the effect of increasing asset correlation across the
portfolio, and by the frailty effect.

Our proposed methodology could be a practically useful tool for not only regulatory au-
thorities but also financial institutions to grasp the dynamics of the actual risk sources on the
portfolio depending on economic conditions without additional data under the current credit
risk management system. This approach is expected to contribute to securing the stability of
the portfolio level and the entire financial system by the fat tail risk responding to by sources
when the economic downturn.
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Tables

Table 1: Descriptive statistics for charge-off rates by sector in annualized

This table shows the descriptive statistics for charge-off rate by sector in 1990:Q1~2019:Q3. Charge-off historical data
in FDIC covers since 1984 :Q1 all sectors except the Mortgages, but this paper is used sub time horizon(1990:Q1~) data
that all sectors are covered. Because the Mortgages sector is important that exposure weight is 46% on average all over
time.

Mortgages Business Creditcards Individuals Rest Lease

Weight* 0.46 0.23 0.09 0.13 0.06 0.03

N 119 119 119 119 119 119

Mean 0.0045 0.0108 0.0546 0.0159 0.0059 0.0059

Std 0.0059 0.0072 0.0177 0.0058 0.0056 0.0036

Skew 1.8708 1.2294 2.1781 1.7169 2.6095 1.2235

Kurt 2.2970 0.7219 6.3780 3.1119 7.4004 1.0525

Min 0.0005 0.0033 0.0347 0.0086 0.0016 0.0017

Q1 0.0012 0.0053 0.0437 0.0125 0.0025 0.0033

Med 0.0017 0.0078 0.0504 0.0144 0.0040 0.0046

Q3 0.0040 0.0150 0.0604 0.0178 0.0066 0.0085

Max 0.0254 0.0332 0.1444 0.0362 0.0311 0.0177

RSD** 1.3111 0.6667 0.3242 0.3648 0.9492 0.6102

* Weight = average(sector′s exposure/total exposure)

** The RSD is relative standard deviation.( RSD = Std/Mean)
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Table 2: Cross correlation for expected PD model

This table presents the effective pearson correlation of realized default threshold Φ−1 (`g,t) and time-lagged macroeco-
nomic covariates zk,t−τ that satisfied the economic perspective expected sign and statistical significance level at 5%.
The reporting numbers denote the leading time τ on quarterly for macroeconomic coavriates. And the sequence of
numbers means an order by the absolute value of the pearson correlation. For example, the case of the GDP for the
Mortgages is effective time-lagged correlation coefficients are only in the differential terms. And the sequence of 4 3
2 1 means that an absolute value of 4 quarters lagged correlation coefficient is bigger than 3 quarters it. That means
Corr(Φ−1 (`g,t) , GDPt−4/GDPt−5) > Corr(Φ−1 (`g,t) , GDPt−3/GDPt−4). In addition, we have tested not only the
time-lagged correlations but also the backwardness of economic variables. However, we are interested in the time-lagged
correlation of macro variables, so we do not report that.

Mortgages Business Creditcards Individuals Rest Lease

GDP
raw

diff 4 3 2 1 3 4 1 4 3 2 1 3 1 4 2 3 2 4 1 3 2 4 1

HPI
raw

diff 4 3 2 1 2 3 4 1 3 4 2 1 3 2

CPI
raw 1 2 3 4 1 2 3 4

diff

Unemployment
raw

diff 4 3 2 1 3 4 2 1 4 3 2 1 2 3 1 4 2 3 1 4 4 3 2 1

DTI
raw 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

diff

S&P500
raw 4 4 3 1 2 4 3 4 1 2 3 3 4 1 2 4 2 3 1

diff

T_1Y
raw 4 4 3

diff 3 4 2 1 3 4 2 1 4 3 2 1 1 4 3 2 3 2 1 4 4 3 2 1

T_10Y
raw 4

diff

Curvature
raw

diff 2 3 4 1 2 3 1 4 4 2 3

TB3MS
raw

diff 4 3 2 1

TED
raw 4 3 2 4 3 2 4 3 2 1 4 3 2 1 4 3 2

diff 3 1

Prime
raw 4 4 3

diff 4 3 2 1 3 2 4 1 4 3 1 2 4 3 2 1
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Table 3: Time-varying model prameters

Panel A : This table presents the estimated parameters for time-varying default thresholds hg,t in Eq. (9) and time-
varying asset correlation ρg,t in Eq.(11), and the summary descriptive statistics for ρg,t and hg,t point-in-time. One,
two, and three asterisks indicate statistical significance at the 5%, 1%, and 0.1% levels, respectively. The PDg,t indicate
the expected portfolio loss PDg,t = Φ (hg,t), and ∆ means the differential terms.
Panel C: This table shows the estimeted asset correlation ρg and default threshold hg based on static parameters
assumption model in Eq. (7). The PDg indicate the unconditinal expected default rate PDg = Φ (hg).

Panel A-1 : Time-varying default threshold model hg,t.
Variable name Mortgages Business Creditcards Individuals Rest Lease

constant -2.502 *** -2.507 *** -2.495 *** -3.023 *** -3.874 *** -4.087 ***

CPIt−1 -0.005 ***

∆DTIt−4 0.062 *** 0.079 *** 0.077 *** 0.107 *** 0.140 ***

∆GDPt−3 -6.518 *** -2.236 ** -6.345 ***

∆GDPt−4 -14.635 ***

∆HPIt−2 -3.448 ***

∆HPIt−3 -1.386 **

∆HPIt−4 -18.266 ***

∆Primet−3 -0.122 **

∆Primet−4 -0.072 ***

T−1Yt−4 -0.025 **

TEDt−4 0.168 ***

∆Unemployt−2 0.268 ***

∆Unemployt−3 0.202 ***

∆Unemployt−4 0.099 *** 0.078 **

Mean(PDt) 0.0042 0.0098 0.0537 0.0156 0.0057 0.0061

Std(PDt) 0.0051 0.0065 0.0118 0.0033 0.0048 0.0035

corr(PDt, `t) 0.7681 0.8376 0.8170 0.8279 0.8890 0.8012

Panel B : Time-varying asset correlation model ρg,t.
Variable name Mortgages Business Creditcards Individuals Rest Lease

α0 -0.401 -0.536 *** -0.623 *** -0.631 *** -0.463 *** -0.556 ***

α1 1.359 *** 2.572 *** 0.835 *** 4.631 *** 1.056 *** 5.146 ***

α2 0.019 *** 0.045 *** 0.051 *** 0.055 *** 0.025 ** 0.021 ***

Mean(ρt) 0.0412 0.0132 0.0057 0.0053 0.0156 0.0118

Std(ρt) 0.0218 0.0114 0.0120 0.0061 0.0064 0.0110

s 2 1 3 2 5 5

Log-likelihood 572.00 521.30 395.86 524.59 571.87 584.28

Panel C : Static model ρgand hg .
Variable name Mortgages Business Creditcards Individuals Rest Lease

PD 0.0042 0.0104 0.0550 0.0160 0.0056 0.0058

ρ 0.1036 0.0493 0.0188 0.0163 0.0546 0.0367

Log-likelihood 513.07 435.05 317.69 444.23 496.62 509.07
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Table 4: Various model prameters

Panel A : This table presents the estimated parameters for risk sources that asset correlation ρg based on static as-
sumption, and default threshold hg based on time-varying assumption. One, two, and three asterisks indicate statistical
significance at the 5%, 1%, and 0.1% levels, respectively. The PDg,t indicate the expected portfolio loss PDg,t = Φ (hg,t),
and ∆ means the differential terms.
Panel B: This table shows the estimeted asset correlation ρg,t based on time-varying assumption, and default threshold
hg based on static assumption. The PDg indicate the unconditinal expected default rate PDg = Φ (hg).

Panel A : Time-varying default threshold model hg,t under static asset correlation.
Variable name Mortgages Business Creditcards Individuals Rest Lease

constant -2.451 *** -2.675 *** -2.234 *** -3.177 *** -3.969 *** -3.650 ***

CPIt−1 -0.005 ***

∆DTIt−4 0.079 *** 0.058 *** 0.094 *** 0.117 *** 0.098 ***

∆GDPt−3 -6.157 *** -6.554 *** -3.907 ***

∆GDPt−4 -16.139 ***

∆HPIt−2 -3.001 ***

∆HPIt−3 -2.372 **

∆HPIt−4 -19.222 ***

∆Primet−3 -0.099 **

∆Primet−4 -0.112 ***

T−1Yt−4 -0.027 ***

TEDt−4 0.116 ***

∆Unemployt−2 0.267 ***

∆Unemployt−3 0.198 ***

∆Unemployt−4 0.230 *** 0.149 **

Mean(PDt) 0.0048 0.0103 0.0556 0.0161 0.0055 0.0057

Std(PDt) 0.0061 0.0066 0.0153 0.0047 0.0042 0.0031

corr(PDt, `t) 0.7638 0.8377 0.8756 0.8511 0.8842 0.8262

ρ(static) 0.0392 0.0138 0.0052 0.0047 0.0158 0.0110

Log-likelihood 551.66 494.99 377.79 497.66 552.55 561.29

Panel B : Time-varying asset correlation model ρg,t under static default threshold.
Variable name Mortgages Business Creditcards Individuals Rest Lease

α0 -0.397*** -0.404 -0.653 *** -0.054 *** -0.359 -0.374

α1 0.642 *** 0.000 0.000 2.170 *** 0.000 0.000

α2 0.023 *** 0.047 *** 0.149 0.046 *** 0.046 0.022

Mean(ρt) 0.080 0.0445 0.0180 0.0144 0.0491 0.0353

Std(ρt) 0.121 0.0671 0.0331 0.0201 0.0332 0.0292

s 5 4 4 2 2 4

PD(static) 0.0020 0.0087 0.0502 0.0152 0.0055 0.0055

Log-likelihood 530.66 443.24 355.92 470.49 507.23 511.64
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Figures

Figure 1: Annualized charge-off rates

This figure presents the historical annualized charge-off rates by loan sector during 1990:1Q~2019:3Q. The gray bars
show the U.S. business cycle contraction periods: the Commercial Real Estate Crisis from 1990:Q3 to 1991:Q1 (CREC),
the Dotcom Bubble Crisis from 2001:Q1 to 2001:Q4 (DBC) and the Great Financial Crisis from 2007:Q4 to 2009:Q2
(GFC) defined by the National Bureau of Economic Research (NBER).

(a) Mortgages, Business and Credit Cards

(b) Individual, Rest and Lease
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Figure 2: Time-varying risk sources and sector charge-off

This figure compares the estimated time-varying risk sources (ρg,t, PDg,t = Φ (hg,t)) and the static risk sources
(ρg ,PDg = Φ (hg)) with historial annualized charge-off rates by sector. The axis range is marked differently for each sec-
tor to show information more efficiently. (e.g. the Mortgages:0~0.3, the Business and Creditcards:0~0.15, others:0~0.1).
The gray band around the two asset correlation estimates (ρg,t, ρg) are the 95% confidence interval using the delta
method. Basel’s criterias show constant value or lower bound of mapping exposure class in Appendix 1.

(a) Mortgages (b) Business

(c) Credit Cards (d) Individuals

(e) Rest (f) Lease
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Figure 6: Frailty source contribution by various parameter assumptions model

These figure compares the risk contributions RCfrailtyg,t of frailty source for each sector portfolio g under various para-
meters assumption models. The solid line presents the contribution given residual frailty effect fTVg,t in Eq. (13) under
time-varying risk sources assumption model in Eq. (8). In contrast, the dash line shows the contribution given es-
timated fStg under static assumption model in Section (2.3.1). And, the dot line displays the risk contribution given
residual frailty under the partly time-varying parameter (time-varying expected default model Eq. (9) and static as-
set correlation assumption model). The Creditcards’ axis range is marked differently for experession wide range. (eg.
Creditcards:-0.02~0.1, others:-0.02~0.03).

(a) Mortgages (b) Business

(c) Credit Cards (d) Individuals

(e) Rest (f) Lease
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Appendix

1. Basel’s asset correlation criteria
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2. Parameter estimation by Maximum likelihood method.

We employ the sequentially follow next four stages to estimate the risk sources. The first stage,
in Section 2.2, we have induced the time-varying cumulative distribution function (CDF) Eq.
(8) for unconditional portfolio loss by applying the time-varying default threshold in Eq. (9)
and the time-varying asset correlation in Eq. (11) to the static risk sources assumption model
in Eq (7). Differentiating this cdf with respect to `g,t gives the probability densty function
(PDF) of time-varying portfolio loss by inverse function theorem as

f(`g,t) =

√
1− ρg,t
ρg,t

· exp
[

1

2ρg,t

(
hg,t −

√
1− ρg,tΦ−1(`g,t)

)2] · exp [1

2
(Φ−1(`g,t))

2

]
(17)

In the second stage, the risk sources ρg and hg are estimated using the pdf of unconditional
portfolio loss cdf in Eq. (7) based on static parameters assumption. The likelihood of the static
model given as

max
θ

N∏
i=1

√
1− ρg
ρg

· exp
[

1

2ρg

(
hg −

√
1− ρgΦ−1(`g,i)

)2] · exp [1

2
(Φ−1(`g,i))

2

]
(18)

where `g,i is the i − th observable charge-off rate for sector g not considering time steps.
These results by portfolio are compared to the time-varying estimates in our empirical analysis
in Section 3.2 as static estimates.

In the third stage, we calculate initial values ρg,t−1 of the time-varying model in Eq. (11)
by the first 5 quarters data using the static model in Eq. (18) in the second stage. And the
initial values β0 and βzk in the time-varying default threshold model in Eq. (9), the sensitivity
to economic covariates, are used results of the second stage based on static assumptions.

In the fourth stage, the parameters of the final time-varying model are estimated by the
maximum likelihood function in Eq. (19) that contains the time-varying asset correlation
ρg,t in Eq. (11) and the time-varying default threshold hg,t in Eq. (9). The likelihood for
time-varying risk sources model is able to write as,

max
θ

N∏
t=1

√
1− ρg,t
ρg,t

· exp
[

1

2ρg,t

(
hg,t −

√
1− ρg,tΦ−1(`g,t)

)2] · exp [1

2
(Φ−1(`g,t))

2

]
(19)

where θ = (αg,βg
z)′ is the parameters set of time-varying models as asset correlation

ρg,t model parameters αg = (αg,0, αg,1, αg,2)′ and default threshold hg,t model parameters
βg

z = (β0, β
z
1 , β

z
2 , · · · , βzk)′.

The initial values of time-lagged loss distribution ug,t−s in Eq. (11) are used from F (`g,t−s|ρg,t−s, hg,t−s)
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estimated the parameters of the third step based on static assumption models. And the final
models are selected by AIC and SBC include optimal persistence time s as short-term shock
in time-varying asset correlation model in Section 2.2.2. Through the above four stages, the
time-varying ρg,t and time-varying hg,t can be calculated for each point in time, which means
to be able to estimate time-varying loss distribution in Eq. (8). The final estimates of time-
varying risk sources display in the empirical results from 1991:Q2 to 2019:Q3, excluding the 5
quarter data used to calculate the initial values in the third stage.
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